

تعليمات عامة

- يسمح باستعمال الآلة الحاسبة غير القابلة للبرمجة؛
- يمكن للمترشح إنجاز تمارين الامتحان حسب الترتيب الذي يناسبه؛
 - ينبغي تفادي استعمال اللون الأحمر عند تحرير الأجوبة.

مكونات الموضوع

يتكون الموضوع من أربعة تمارين ومسألة، مستقلة فيما بينها، وتتوزع حسب المجالات كما يلي:

3 نقط	الهندسة الفضائية	التمرين الأول
3 نقط	الأعداد العقدية	التمرين الثاني
3 نقط	حساب الاحتمالات	التمرين الثالث
2.5 نقط	المعادلات التفاضلية وحساب التكامل	التمرين الرابع
8.5 نقط	دراسة الدوال العددية والمتتاليات العددية	المسألة

- نرمز ب \overline{z} لمرافق العدد العقدي z و |z| لمعياره،
 - ln يرمز لدالة اللوغاريتم النبيري.

الامتحان الوطني الموحد للبكالوريا - الدورة العادية 2022 – الموضوع مادة: الرياضيات - شعبة العلوم التجريبية مسلك علوم الحياة والأرض خيار رياضة ودراسة ومسلك العلوم الفيزيائية ومسلك العلوم الزراعية

«S

0.5

0.5

0.5

0.5

0.5

التمرين الأول (3 نقط):

B(1,2,0) و A(0,1,1) في الفضاء المنسوب إلى معلم متعامد ممنظم مباشر $\left(O,\overrightarrow{i},\overrightarrow{j},\overrightarrow{k}\right)$ ، نعتبر النقط C(-1,1,2) و

$$\overrightarrow{AB} \wedge \overrightarrow{AC} = \overrightarrow{i} + \overrightarrow{k}$$
 اً) بین اُن (1

$$(ABC)$$
 معادلة ديكارتية للمستوى $x+z-1=0$ أستنتج أن $x+z-1=0$

$$(S)$$
 نتكن (S) الفلكة التي مركزها $\Omega(1,1,2)$ وشعاعها $R=\sqrt{2}$ ، حدد معادلة الفلكة (S)

$$A$$
 مماس للفلكة (S) مماس النقطة (ABC) مماس النقطة (S) في النقطة

(ABC) المستقيم (
$$\Delta$$
) المار من النقطة C والعمودي على المستوى (4

ب) بين أن المستقيم
$$(\Delta)$$
 مماس للفلكة (S) في نقطة D يتم تحديد إحداثياتها

$$d(A,(\Delta))$$
 أحسب الجداء السلمي $\overrightarrow{AC}.(\overrightarrow{i}+\overrightarrow{k})$ ثم استنتج المسافة (ح.0.5

التمرين الثاني (3 نقط):

 $a=-1-i\sqrt{3}$ في المستوى العقدي المنسوب الى معلم متعامد ممنظم $\left(O,\vec{u},\vec{v}\right)$ ، نعتبر النقطة A ذات اللحق

 \overrightarrow{OA} والنقطة $b=-1+i\sqrt{3}$ و الإزاحة $b=-1+i\sqrt{3}$

$$d=-2$$
 هو t اثبت أن لحق النقطة B صورة النقطة D صورة النقطة والمراجعة المراجعة المراجع

$$\left(\frac{2\pi}{3}\right)$$
 نعتبر الدوران R الذي مركزه D وزاويته (2

$$c=-4$$
 بين أن لحق النقطة C صورة النقطة B بالدوران B هو

اً) أكتب العدد
$$\frac{b-c}{a-c}$$
 على الشكل المثلثي $\frac{b}{a}$

$$\left(\frac{b-c}{a-c}\right)^2 = \frac{c-d}{b-d}$$
 استنج أن (ب

لتكن (Γ) الدائرة التي مركزها D وشعاعها D و وشعاعها D الدائرة التي مركزها D الدائرة التي مركزها (Γ)

 (Γ') و (Γ) لحقها Z تنتمي إلى الدائرتين

$$|z+2|=2$$
 أ) تحقق أن $|z+2|=2$

$$|z|=4$$
 (الاحظ أن $z+\overline{z}=-8$ (الاحظ أن $z+\overline{z}=-8$

0.25
$$\Gamma$$
 ج) استنتج أن الدائرتين Γ و Γ تتقاطعان في نقطة وحيدة يتم تحديدها.

«S

0.75

0.75

0.75

0.75

0.75

0.75

0.5

0.5

0.5

0.25

التمرين الثالث (3 نقط):

يحتوي كيس على عشر كرات: ثلاث كرات بيضاء وثلاث كرات خضراء وأربع كرات حمراء، لا يمكن التمييز بينها باللمس. نسحب عشوائيا وتآنيا ثلاث كرات من الصندوق.

بين أن
$$p(A)=rac{1}{6}$$
 حيث A هو الحدث " عدم الحصول على أي كرة حمراء " (1

" حيث
$$B$$
 هو الحدث "الحصول على ثلاث كرات بيضاء أو ثلاث كرات خضراء $p(B)$

" بين أن
$$p(C) = \frac{1}{2}$$
 هو الحدث " الحصول على كرة حمراء واحدة بالضبط " على أن $p(C) = \frac{1}{2}$

" حيث
$$D$$
 هو الحدث "الحصول على كرتين حمراوين على الأقل $p(D)$ احسب (4

التمرين الرابع (2.5 نقط):

 $h(x) = (x+1)e^x$ ب المعرفة على المعرفة على الدالة

$$I=\int_{-1}^{0}h(x)\,dx$$
 دالة أصلية للدالة h على \Box ثم احسب $x o xe^{x}$ دالة أصلية للدالة الدالة الدالة

$$J = \int_{-1}^{0} (x+1)^{2} e^{x} dx$$
 باستعمال مكاملة بالأجزاء احسب (ب

$$(E): y''-2y'+y=0$$
 أ) حل المعادلة التفاضلية (2)

$$h'(0)=2$$
 و $h(0)=1$ بين أن الدالم h هي حل المعادلم h الذي يحقق الشرطين h

المسألة (8.5 نقط):

f نعتبر الدالة العددية f المنحنى الممثل للدالة f بما يلي $f(x)=x(\mathrm{e}^{\frac{x}{2}}-1)^2$: بما يلي $f(x)=x(\mathrm{e}^{\frac{x}{2}}-1)^2$ المنحنى الممثل للدالة $f(x)=x(\mathrm{e}^{\frac{x}{2}}-1)^2$ المنحنى الممثل للدالة $f(x)=x(\mathrm{e}^{\frac{x}{2}}-1)^2$ المنحنى الممثل للدالة $f(x)=x(\mathrm{e}^{\frac{x}{2}}-1)^2$ المنحنى الممثل للدالة وي معلم متعامد ممنظم $f(x)=x(\mathrm{e}^{\frac{x}{2}}-1)^2$ الوحدة $f(x)=x(\mathrm{e}^{\frac{x}{2}}-1)^2$ المنحنى الممثل الدالة وي معلم متعامد ممنظم الدالة وي المحددة وي المح

$$\lim_{x \to -\infty} f(x)$$
 و $\lim_{x \to +\infty} f(x)$ احسب النهايتين (1 الم

أحسب
$$\lim_{x\to +\infty} \frac{f(x)}{x}$$
 ثم أول النتيجة هندسيا

$$-\infty$$
 بجوار (C) بين أن المستقيم (Δ) أي المعادلة $y=x$ مقارب المنحنى (Δ) بجوار 0.5

$$(\Delta)$$
 والمستقيم ((C) ب (C) ادرس إشارة (C) لكل (D) من (D) واستنتج الوضع النسبي للمنحنى ((D)

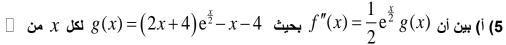
$$f'(x) = (e^{\frac{x}{2}} - 1)^2 + xe^{\frac{x}{2}}(e^{\frac{x}{2}} - 1)$$
 اک ایبین آن $f'(x) = (e^{\frac{x}{2}} - 1)^2 + xe^{\frac{x}{2}}(e^{\frac{x}{2}} - 1)$ اک ایبین آن $f'(x) = (e^{\frac{x}{2}} - 1)^2 + xe^{\frac{x}{2}}(e^{\frac{x}{2}} - 1)$

$$\square$$
 على x على المشتقة f' على x من x من x الكل x من x الكل على x على x 0.5

$$\square$$
 ج) ضع جدول تغیرات الدالمة f على \square

NS 22

الامتحان الوطنى الموحد للبكالوريا - الدورة العادية 2022 - الموضوع مادة: الرياضيات- شعبة العلوم التجريبية مسلك علوم الحياة والأرض ومسلك علوم الحياة والأرض خيار رياضة ودراسة ومسلك العلوم الفيزيائية ومسلك العلوم الزراعية


0.5

0.5

0.5

0.25

1

- 0.5
- g من خلال المنحنى جانبه، الممثل للدالة g

$$(g(\alpha) = 0)$$
 على $g(x)$ على على الدد إشارة

ج) ادرس تقعر المنحنى
$$(C)$$
 وحدد أفصولي نقطتي الانعطاف

$$\ln(4)$$
 \square 1,4 أنشئ (C) أنشئ (C) أنشئ ((C) أنشئ ((C)

(
$$f(\alpha)$$
 \square -3,5 **9** α \square -4,5 **9**

$$\square$$
 أ) بين أن الدالة f تقبل دالة عكسية f^{-1} معرفة على f

$$(f^{-1})'(\ln 4)$$
 ب أحسب (1 أحسب

$$\square$$
 أ) بين أن الدالة f تقبل دالة عكسية f^{-1} معرفة على G

$$(f^{-1})'(\ln 4)$$
 (+

$$I\!\!N$$
 من $u_{n+1}=f(u_n)$ و $u_0=1$ المتتالية العديية المعرفة كما يلي : $u_0=1$

ب) بين أن المتتالية
$$(u_n)$$
 تناقصية

ج) استنتج أن المتتالية
$$(u_n)$$
 متقاربة

$$(u_n)$$
 أحسب نهاية المتتالية (

0.5

0.25

0.5