0.5

0.5

0.5

0.25

0.25

0.25

0.5

0.5

0.5

EXERCICE1 (10 points)

0.25 A-1- Vérifier que
$$(\forall x \in \mathbb{R}^+)$$
 ; $0 \le 1 - x + x^2 - \frac{1}{x+1} \le x^3$

0.25 2- En déduire que .
$$(\forall x \in \mathbb{R}^+)$$
; $0 \le x - \frac{x^2}{2} + \frac{x^3}{3} - \ln(1+x) \le \frac{x^4}{4}$

B- On considère la fonction f définie sur $I = [0, +\infty[$ par .

$$f(0) = \frac{1}{2}$$
 et pour tout x de $]0,+\infty[$; $f(x) = \frac{x - ln(1+x)}{x^2}$

et soit (C) sa courbe représentative dans un repère orthonormé $(O; \vec{i}, \vec{j})$

c) Calculer
$$\lim_{x\to+\infty} f(x)$$
, puis interpréter graphiquement le résultat obtenu.

2-a) Montrer que
$$(\forall x \in]0, +\infty[)$$
 ; $f'(x) = -\frac{g(x)}{x^3}$

où
$$g(x) = x + \frac{x}{x+1} - 2\ln(1+x)$$

b) Montrer que
$$(\forall x \in I)$$
; $0 \le g'(x) \le x^2$

c) En déduire que
$$(\forall x \in I)$$
 ; $0 \le g(x) \le \frac{x^3}{3}$

d) Déterminer le sens de variation de
$$f$$
 sur I

$$3-a)$$
 Dresser le tableau de variation de f

b) Représenter graphiquement la courbe
$$(C)$$
 dans le repère $(O; \vec{i}, \vec{j})$

(On prendra
$$\|\vec{i}\| = 2cm$$
 et $\|\vec{j}\| = 2cm$)

0.5
$$C_{-1}$$
- Montrer qu'il existe un unique réel $\alpha \in]0;1[$ tel que $f(\alpha)=\alpha$

2- On considère la suite
$$(u_n)_{n\in\mathbb{N}}$$
 définie par .

$$u_0 = \frac{1}{3}$$
 et $(\forall n \in \mathbb{N})$; $u_{n+1} = f(u_n)$

a) Montrer que.
$$(\forall n \in \mathbb{N})$$
; $u_n \in [0,1]$

b) Montrer que,
$$(\forall n \in \mathbb{N})$$
; $|u_{n+1} - \alpha| \le \left(\frac{1}{3}\right) |u_n - \alpha|$

100			
73	NS 24F	الامتحان الوطني العوحد لليكالوريا - الدورة العادية 2022 ع العوضوع - مادة: الرياضيات- معنك الطوم الرياضية أ و ب - خيار فرنسية	
0.5	c) Montrer par récurrence que $(\forall n \in \mathbb{N})$; $ u_n - \alpha \le \left(\frac{1}{3}\right)^n$		
0.25		d) En déduire que la suite $(u_n)_{n\in\mathbb{N}}$ converge vers α	
	D- Pour to	out $x \in I$ on pose. $F(x) = \int_{x}^{1} f(t)dt$	
0.5	1- Montrer que la fonction F est dérivable sur I et calculer $F'(x)$ pour tout $x \in I$		
0.5	2-a) En util	2-a) En utilisant la méthode d'intégration par parties, montrer que .	
		$(\forall x \in]0, +\infty[)$; $F(x) = 2\ln 2 - \left(1 + \frac{1}{x}\right)\ln(1+x)$	
0.5	b) Calculer $\lim_{x\to 0^+} F(x)$, puis en déduire que . $\int_0^1 f(t)dt = 2\ln 2 - 1$		
0.5	c) Calculer en cm^2 . l'aire du domaine plan limité par la courbe (C) . l'axe des		
		s. l'axe des ordonnées et la droite d'équation $x = 1$	
		pour tout k de \mathbb{N} . $\Delta_k = f(k) - \int_k^{k+1} f(t) dt$	
	et pour	tout n de \mathbb{N}^* . $S_n = \sum_{k=0}^{k=n-1} \Delta_k$	
0.25	1-a) Vérifier que . $(\forall k \in \mathbb{N})$; $0 \le \Delta_k \le f(k) - f(k+1)$		
0.5	b) En déd	uire que . $(\forall n \in \mathbb{N}^*)$; $0 \le S_n \le \frac{1}{2}$	
0.25	2-a) Montrer que la suite $(S_n)_{n\in\mathbb{N}}$ est monotone.		
2.25	b) En déduire que la suite $(S_n)_{n\in\mathbb{N}}$, est convergente.		
2.25	c) Montre	r que la limite ℓ de la suite $\left(S_n\right)_{n\in\mathbb{N}}$, vérifie, $\frac{3}{2}-2\ln 2\leq \ell\leq \frac{1}{2}$	
1	EXERCICE2	(3.5 points)	
	Soit m un r	nombre complexe non nul donné et $j = -\frac{1}{2} + \frac{\sqrt{3}}{2}i = e^{i\frac{2\pi}{3}}$	
1	I- On consid	dère dans l'ensemble C l'équation d'inconnue z	
		(F) 2 2 2 2 2 2	

$$(E_m)$$
: $z^2 + mj^2z + m^2j = 0$

0.5 | 1- Vérifier que | $j^3 = 1$ et $1 + j + j^2 = 0$

0.25 | 2-a) Montrer que le discriminant de l'équation (E_m) est $\Delta = [m(1-j)]^2$

(On rappelle que p est le plus petit diviseur premier de n)

par (p-1). Vérifier que nr = 1 - (p-1)(v+nq)

0.25

b) Soient q et r respectivement le quotient et le reste dans la division euclidienne de u

